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Summary of Project

The objective of this project has been the development of high-order accurate simulation techniques
for fluid flow problems of interest to the US Navy, such as hydrodynamics and acoustics. Over the last
decade there has been a growing appreciation of the inadequacy of current production level computational
fluid dynamics codes in delivering sufficient accuracy for these types of problems as well as for resolving
a sufficiently wide range of turbulence scales for reliable large eddy simulations. The use of higher-order
discretizations such as Discontinuous Galerkin methods has been advocated as an alternate approach for
simulating these types of problems with increased accuracy. While these methods have been under develop-
ment for over two decades, most of the effort has concentrated on the development of sophisticated spatial
discretizations, which in turn have been used mostly with explicit solution techniques. In order to be useful
in an industrial setting, the efficiency of these methods must be improved through the development of more
optimal solvers for steady-state and time-implicit problems. :

In this project, we have concentrated on the development of efficient solution techniques for high-order
Discontinuous Galerkin methods from both a theoretical and practical standpoint. The basic approach has
been to develop and demonstrate an h-p multigrid solution strategy which delivers optimal convergence
rates which are independent of both the order of accuracy p of the discretization, and the resolution h of the
mesh. This solution technique has been demonstrated for both steady-state problems, and for time-implicit
problems, using a high-order implicit Runge-Kutta time stepping scheme. The solution approach was origi-
nally implemented and demonstrated for the two-dimensional Euler equations, using spatial discretizations
up to p=5 (6th order accurate in space). Subsequently, these were extended to three-dimensional problems
implemented in parallel, demonstrating good parallel efficiency on up to 2000 processors. Recently, the h-p
multigrid solver has also been extended to the full Navier-Stokes equations in two dimensions, using the
interior penalty (IP) method, and other approaches to viscous DG discretizations have been explored. While
the initial multigrid approach has been performed in modal space, extensions of this solver to nodal DG
discretizations have also been investigated.

At the same time, investigations into modern techniques for sensitivity analysis and error control using
adjoint methods have been pursued. The discrete adjoint of the DG discretization has been derived and im-
plemented, and demonstrated for a shape optimization problem. Solution of the adjoint problem is achieved
using the h-p multigrid algorithm, yielding similar efficiency compared to the analysis problem. The adjoint
solution has also been used to estimate spatial error and drive an adaptive h-p refinement procedure for
improving accuracy in targeted output functionals at optimal cost.

The techniques developed in this project have demonstrated the potential of efficient high-order accu-
rate methods such as the DG approach for industrial flow problems. Future work is underway, effectively
leveraging the results of this project, in order to extend these techniques to the full three-dimensional Navier-
Stokes equations running on massively parallel computer architectures.

This project, which was funded under the DEPSCoR program, has been instrumental in building the
computationally oriented research programs of both the PI and co-PI on campus, and has fostered long-
lasting collaborations between the University other federally funded research centers.



Contents

1.

Introduction

110 High-Order'DisCrétization® « « « s v 5 5 o g ae® § 9 585 58 a 095 & 888 85 53
1.2 Unsiictared Mesh TechBiqUES « « o ¢ o » aovwmmemm o o 6« o & % @ & 2ot s oo @ 6% 6 s
1.3 Solution Adaptive Approaches . . . . . . . . . ... ..

Technical Achievements

2.1 Governing Equations for Inviscid Flow Problems . . . . . . ... ... ... ... .....
2.2 High-Order Discontinuous Galerkin Spatial Discretization . . . . . ... ... ... ....
23 ThelmplcitiSolVer s im e s 8 8 m 3 i 8 A A BEd Ll S AR T 5 o Si@E s S v o us
24, TheRp-NMullgrid/Approdeh » o c cs v v v s s sawmmdm e ¢ 56 ¥ 5 8 5 4 a6 @8 ¢ %55 s
2.5 Parallel Implementatic.m .....................................
2.6 Simple How configuration.. . . . » o & s s w1 0 s mmreirE 6 w s s 8 A 8w s R
261 Acomracy VAlIdANON, : o v 5 55 v s B W SREE 06 S5 on § # 2nE § 8 ¥ 8
262 MultgrdBIAGency: SIAY « « o« 5 5 5 5 5 nmreis @ ¢ 8 8 0 5 & 0 e @ 6 W T b
25 ComplesHowConh@gIiation, . . ¢ ¢ v s o ww 5 8 5 v o 5 & 8 8 8 wissemer & 5 K s 8
2701 MulGmid RSl e e 0 s s st v e g @ 99 B AaEa s BS B RE § daisubs oo 0 s
272 Computational Performance: & & o 5 o 5 @ 5 5 S0 § 8 o & & & i WAE0E 68 8§ s
2.8 Extension to Implicit Time-Dependent Problems . . . . .. ... ... ... ........
2.8.1 VortexConvectionCase . . . . . . v o v v v v v v v v o v o e o e n et na
2.8.2 Shedding flow overatriangularwedge . . . . . ... .. ... ... .. 00,
2.9 Extension to Diffusion Problems and the Navier-Stokes equations . . . . . ... ... ...
2.9.1 Unified Inviscid-Viscous Flux Formulation . . . ...................
292 InteriorPenaltyMethod . ... ... ... .. ...t nnnne..
2.10 p-Multigrid for Nodal DG Approximation . . . . . . . . v v v v v v v v v v v oo e e e
2.11 Adjoint-Based Error Estimation and Adaptivity . . . .. ... . ... ... .. .......

Conclusions and Further Work

Broader Impact of DEPSCoR Project
4.1 People Supportedbythe Grant . . . . . . . . . . . . . . i i e e e
4.2 Publications Resulting fromthisGrant . . . . . ... ... ... ...............



NO00014-04-1-0602: Efficient High-Order Accurate Methods
University of Wyoming

1. Introduction

Computational fluid dynamics (CFD) is now accepted as an integral part of most engineering design
and analysis exercises. Within the DoD, CFD is used extensively for modeling new concepts, understanding
physical phenomena, and aiding in the design process. In fact the use of CFD has become so ubiquitous,
that it is often considered by many to be a mature engineering tool, and investment has often shifted from
the development of better analysis capability, to the incorporation of existing simulation capabilities into
more complex coupled multidisciplinary analyses, or design optimization strategies.

However, developers and practitioners alike fully understand the severe limitations of current-day CFD
capabilities. The most well-known of these is probably the difficulties in the simulation of turbulent flows.
Because of the wide range of scales present in high-Reynolds number turbulent flows of interest in engi-
neering problems, it is not feasible to resolve all relevant scales in a numerical simulation, and physical
modeling of the turbulence must be performed in the form of a Reynolds-averaged Navier-Stokes (RANS)
approach. RANS approaches with turbulence models have achieved reliable predictive abilities only for the
small subset of flows where separation is either non-existent, or of a minimal nature. For massively sepa-
rated flows, the alternative of using Large Eddy Simulation (LES), which attempts to numerically resolve
the most important range of turbulent scales, appears daunting because of the increased expense of such
simulations, which is easily several orders of magnitude larger than a RANS simulation [1].

Other phenomena which have proved difficult to simulate numerically because of disparate length scales
include wave phenomena, such as acoustics and electromagnetics, particularly as the wave frequency in-
creases. Even steady-state mean flow simulations, such as the flow over a maneuvering submarine, or a
missile, have proven very difficult to compute accurately, particularly if the effect of convected flow features
such as vortices and wakes is of concern [2, 3]. The resolution of such flow features typically degrades
very quickly as these progress downstream in the simulation, due to the numerical diffusion inherent in
any computational approach. In fact, the simulation of such engineering flows still has yet to be computed
sufficiently accurately and routinely for use in a design cycle.

In some sense, the state-of-the-art in CFD is currently at a cross-roads. This field has achieved a high
level of utility in science and engineering, becoming an almost indispensable component of any design
process. On the other-hand, the remaining deficiencies are so serious that CFD can only be used confidently
in a relatively narrow application range. Furthermore, rapid advances in simulation capability have not
been forthcoming over the last decade, apart from the increased affordability due to the decreasing cost of
computer hardware. The majority of current-day CFD solvers rely on algorithms developed ten to twenty
years ago, which have been refined and made more accessible through the evolution of software and the
constant decreasing cost of hardware.

One major advance has been the increasing development and acceptance of unstructured grid methods.
These methods have resulted in greater flexibility for the modeling of complex geometries, most often
encountered in real-world engineering problems. One of the great promises of unstructured grid technology
is the ability to easily incorporate adaptive meshing techniques. However, adaptive meshing techniques have
seldom achieved their potential for engineering problems, due to the inherent difficulties in devising reliable
error estimation criteria to guide the adaptive grid refinement process.

To make substantial progress in extending the scope and utility of CFD, there is an emerging consensus
that a more sophisticated and comprehensive approach will be required, other than reliance on the usual
well-established techniques developed over the past twenty years.
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Several important recent developments are seen as having a potentially large impact on the future ca-
pability of CFD. One of these is the development of higher-order discretizations, and the tailoring of these
approaches to unstructured mesh methods. Another area of interest involves recent advances in output func-
tional error estimation. It is the further development of these ideas and incorporation into an unstructured
grid framework which will enable substantial future advances in CFD capability.

1.1 High-Order Discretizations
While most traditional CFD discretizations are second-order accurate, higher-order accurate discretizations
have been proposed and investigated from an early stage [4—6]. The basic idea can be surmised from simple
approximation theory. If a continuous function f is to be approximated over a set of discrete intervals of
width A, a second-order accurate approximation (or linear fit) results in two degrees of freedom over each
interval, corresponding the the mean value and slope of the function over the interval. Using a Taylor series
expansion, an approximation can be written as:
ho h* 9° n 9° K o4

f(x+ah)=f(x)+eﬁ£+a22—!a—£+a35§r+a‘za—j+... (1
where 0 < € < 1 for approximations inside the interval of width h. For a second-order approximation, which
is exact for linear functions, the approximation error is given as:

2
Error = cnzm )

ox?
where 1 is in the interval n € (x,x+ k) and C is a constant. For higher-order approximations, for example
fourth order-accurate cubic interpolations often used in spline curve fitting, the larger number of degrees
of freedom per interval (four in the case of cubics) enables the approximation of higher derivatives in the
function f, thus resulting in an approximation error given as:

Error = Chda“f—(:]) 3)

0x
where 1) is in the interval n € (x,x+ h). Thus, because 4 is a small quantity, the higher-order error term is
generally smaller than the lower-order error term, provided the higher-order derivatives of the function f are
bounded. Perhaps more important is the asymptotic behavior of these approximations with respect to the
interval size h: the linear error term varies as O(h?), while the cubic approximation term varies as O(h*).
The implications are such that a doubling of grid resolution (halving of size of k) results in an error reduction
factor of 4 for the second-order scheme, and an error reduction factor of 16 for the fourth-order scheme. For
a three-dimensional problem, the doubling of grid resolution results in a factor 2* = 8 increase in overall
number of grid points and hence total computational work. Therefore, for second-order accurate schemes, as
the grid is refined, overall computational costs increase more rapidly than the delivered accuracy. However,
the superior asymptotic properties of higher-order discretizations are not sufficient by themselves to justify
their use. From the above discussion, the absolute value of the error is seen to depend on the values of
higher-order derivatives of the approximated function. Therefore, higher-order methods will be best suited
for functions with bounded or small high-order derivatives, i.e. smooth functions. For non-smooth functions,
including functions which may contain discontinuous higher derivatives, lower-order discretizations may
provide higher accuracy at equivalent resolution levels. For example, it is well known that discontinuous
solutions such as shock waves are most efficiently represented using low-order discretizations. Even for
continuous solutions, the sampling (Nyquist) theorem[7] states that a given solution feature (i.e. wave

2
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length) requires a certain minimum level of sampling points in order to be resolved by any method of any
order. For equivalent resolution levels, low-order methods are intrinsically more cost-effective approaches,
because of the relative simplicity of their construction. On the other hand, as the resolution is increased,
superior error reduction will be achieved by higher-order methods. Thus, the most cost effective method
depends implicitly on the level of desired accuracy, with the cross-over point between methods being a
function of the “smoothness” of the final solution, and the relative costs of each scheme.

For accuracy levels and solution characteristics relevant to most engineering fluid flow problems, the
demonstration of cost-effective higher-order methods has generally been lacking, and second-order methods
have remained the preferred choice. However, a brief look at other fields, such as computational elasticity,
and computational geometry (i.e. CAD packages, surface/curve representations) reveals extensive use of
higher-order discretizations as the most efficient approaches. The key to realizing the benefits of higher-
order discretizations for engineering CFD problems lies in the development of efficient solution algorithms
for these sophisticated discretizations, and a careful matching of the most appropriate discretization types to
the character (smoothness) of the computed solution, through solution adaptive techniques.

1.2 Unstructured Mesh Techniques

The use of unstructured meshes has gained widespread acceptance over the last ten to fifteen years, largely
due to the increased flexibility such methods offer for dealing with complex engineering geometries, as
well as the development of cost-effective discretizations and solution algorithms for unstructured meshes.
The differentiation between structured and unstructured meshes is based not on element types, but on the
data-structures employed by these different approaches. Unstructured meshes are often constructed using
tetrahedral elements in three dimensions, but can be formed using hexahedral elements, prismatic or pyra-
midal elements. Their main characteristic is that there is no direct mapping of these collections of elements
to a three dimensional coordinate system, so that the connectivity of the mesh must be stored explicitly. The
implications are that often-used structured mesh solution techniques, such as banded matrix approaches,
line solvers, and multigrid methods, can not be used directly on unstructured mesh discretizations. This
resulted in the early adoption of simple explicit solution techniques for unstructured meshes, leading to
inefficient overall solution capabilities. Ultimately, it has been the development of more efficient solution
techniques, based on sparse matrix technology [8-11] or multigrid methods [12-15] and line solution al-
gorithms adapted to unstructured meshes through specialized data-structures [16], which have driven the
adoption of unstructured meshes into the engineering CFD community.

In a similar fashion, the initial development of higher-order discretizations for CFD methods was geared
towards structured meshes. Finite difference approximations based on Taylor series expansions of the ap-
proximated function provided the most obvious path towards the achievement of higher-order accuracy
[4, 5, 17, 18]. Unfortunately, these methods proved difficult to extend to unstructured mesh topologies.
More elaborate approaches such as reconstruction techniques were proposed for unstructured meshes [19],
although these suffered from implementation and efficiency issues due to the complex stencils involved.
The development of finite-element approaches such as the Streamwise Upwind Petrov Galerkin (SUPG) or
the Streamline Diffusion method [20, 21] and the Discontinuous Galerkin (DG) method [22, 23] has shown
more promise for the use of higher-order discretizations on unstructured meshes. The SUPG approach relies
on the approximation of the solution through a set of basis functions which span individual elements, but
which are continuous across inter-element boundaries, in the traditional Galerkin finite-element sense [24].
Such discretizations are stable for diffusion problems, but require additional dissipation for ensuring the
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stability of convection problems. Thus an additional streamwise diffusion term is added, the form of which
must be carefully crafted to avoid compromising the higher-order accuracy properties of the scheme.

The Discontinuous Galerkin method was originally formulated by Reed and Hill [25] for the discretiza-
tion of the neutron transport equation. This method was later refined and popularized using a different
approach introduced in a series of papers by Cockburn and Shu [22, 23, 26, 27]. The DG method employs
element-based basis functions formed as higher-order polynomials, in the same fashion as SUPG schemes.
However, continuity of the basis functions across element boundaries is not enforced. The resulting solu-
tion jumps across element boundaries are resolved using a Godunov or approximate Rieman flux function
[28, 29]. This approach has the advantage that the solution, expressed as modal coefficients within each
element, only requires the inversion of an element matrix, once element boundary fluxes are resolved. One
can safely state that the recent interest in DG methods, and in particular in their application to hyperbolic
problems, as for example the Euler equations of gas dynamics, is mainly due to two reasons. Firstly, a large
experience base was already in place in the CFD community as regards the application of high-resolution
finite-volume methods to various types of flows, and the DG method can be viewed as a generalization of
these methods for non-constant test functions (with, however, the promise of a more systematic approach to
building high-order solutions), so the extension was straightforward. Secondly, the DG method offers the
promise of a higher-order truncation error in the case of hyperbolic equations, and Jiang and Shu [30] proved
that the DG method satisfies a local entropy condition for arbitrary triangulations in any space dimension
and to any order of accuracy, which also implies stability of the method for nonlinear shock problems in the
scalar case.

While much work has been devoted in the past to developing high-order accurate discretizations, tech-
niques for efficiently solving the equations arising from these discretizations, in the context of steady-state
or implicit time-integration problems, have not received as much attention. This is important, for the engi-
neering success or failure of these methods ultimately rests on their overall cost effectiveness as regards to
second-order accurate methods. For the majority of engineering problems, including steady-state problems
often encountered in design optimization exercises, and unsteady problems where the time scales are signif-
icantly larger than the resolved spatial scales, explicit methods can not be expected to provide a competitive
solution strategy. The project has therefore focused on the development of efficient solution methods for
unstructured mesh high-order discretizations, while using relatively well established high-order DG dis-
cretizations.

1.3 Solution Adaptive Approaches

One of the advantages of unstructured mesh strategies involves the possibility of incorporating adaptive
meshing techniques to enhance solution accuracy. In the context of higher-order accurate discretizations,
the relative merits of increasing the grid resolution must be weighed against those obtained by increasing the
order of accuracy of the discretization. This leads to the notion of h-p refinement, where h-refinement refers
to the spatial refinement of the mesh, while p-refinement denotes the attainment of increased solution accu-
racy through the use of a (locally) higher-order discretization. Effective implementation of h-p refinement
strategies require not only an estimate of the local solution discretization error, but also a characterization
of this error in terms of smoothness. For example, a purely h-refinement strategy can at best provide a
constant factor in error reduction, as equidistribution of error is ultimately achieved, and further reductions
in overall solution error require global grid refinement. On the other-hand, the effectiveness of a purely
p-refinement strategy may be impeded by the presence of solution discontinuities or non-smooth features
(on the level of the existing grid resolution) which are not efficiently approximated using higher-order meth-
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ods. At any level, the refinement decision must rest on an estimate of the local error relative to the overall
global error, and the choice of refinement type is given by the relative local smoothness of the solution, with
smooth solutions regions benefiting most from p-refinement, and rough solutions regions benefiting most
from h-refinement.

The application of combined h-p refinement has been shown to result in exponentially rapid error con-
vergence, thus providing an optimal strategy for accuracy improvement [31, 32]. However, the estimation of
local discretization error has proven to be a major impediment towards the successful use of solution adap-
tive techniques, even in the simple context of h-refinement alone. Virtually all local error estimates assume
the solution is in the asymptotic convergence range, which is often not the case for non-linear problems.

Rather than attempting to quantify the discretization error at every point in the mesh for adaptive re-
finement criteria, an alternative approach involving adjoint-based error prediction methods has been gaining
popularity recently [33-35]. In this approach, solution of the adjoint of the governing flow equations is
used to quantify the sensitivity of an objective function with respect to local grid resolution throughout the
domain. Adjoint sensitivity techniques have been well developed in the context of design-optimization prob-
lems [36-38]. This approach to mesh refinement is non-local, in the respect that it provides for the global
effect of local resolution changes. Objective functions representing engineering quantities of interest such
as lift, drag, or L/D, can be constructed, thus enabling the mesh refinement process to target quantities of in-
terest. Since vastly different grid resolution distributions are required for different engineering applications
of the same problem (i.e. drag prediction versus sonic boom prediction), this approach enables accurate and
efficient engineering results by avoiding excessive resolution in areas of little influence on the quantity of
interest.

In the current project, we investigate the use of adjoint-based error estimation techniques for driving
adaptive h-p refinement strategies, an area which has remained relatively unexplored, but holds the oppor-
tunity for radical improvements in engineering simulation fidelity and efficiency.

2. Technical Achievements

The principal long term goal of this project is the development of an efficient high-order accurate CFD
solver suitable for Naval applications such as hydrodynamics and acoustics. While this ultimately requires
the development and validation of a three-dimensional Navier-Stokes solver, a multi-pronged strategy was
pursued throughout the project. Firstly, an inviscid (Euler) solver was developed from scratch, initially in
two-dimensions, and then in three dimensions. Proceeding directly to three dimensions with the simplified
setting of inviscid flow allowed us to rapidly build the required infrastructure for large scale multigrid and
parallel computing problems. The two-dimensional code was retained and used to validate new algorithmic
techniques, such as viscous term formulation, and adjoint sensitivity and adaptivity methods. At the same
time, more fundamental investigations into viscous flux formulations and nodal multigrid methods were
pursued in separate software development efforts.

In the following subsections, we first describe the discretization of the Euler equations and the devel-
opment and implementation of the h-p multigrid algorithm for steady-state problems in three dimensions,
including parallel scalability results. We next describe the extension of the multigrid algorithm to time-
implicit problems, which was carried out for the Euler equations in two-dimensions. Extensions of the
current formulation to the Navier-Stokes equations in two-dimensions are then discussed. Investigations
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into the application of the h-p multigrid approach for nodal DG formulations are then addressed. Finally,
adjoint-based techniques for error estimation and adaptive h-p refinement are described and demonstrated.
2.1 Governing Equations for Inviscid Flow Problems

The conservative form of the compressible Euler equations describing the conservation of mass, momentum
and total energy are given in vectorial form

dU(x,?

%+V-F(U)=O @)
subject to appropriate boundary and initial conditions within a three-dimensional domain Q. Explicitly, the
state vector U of the conservative variables and the Cartesian components of the inviscid flux F = (F* | F” F?)
are:

p pu pv pw
pu pu?+p puy puw

U=| pv |, F= puv , =] p4+p |, F= pvw , 5)
pw puw pvw pw2 +p
E, u(E, +p) v(E; +p) w(E; +p)

where p is the fluid density, (u,v,w) are the fluid velocity Cartesian components, p is the pressure and E; is
the total energy. For an ideal gas, the equation of state relates the pressure to total energy by:

p=(-1) E,—%p(u2+v2+w2)] (6)

where Y= 1.4 is the ratio of specific heats.

2.2 High-Order Discontinuous Galerkin Spatial Discretization

The computational domain £ is partitioned into an ensemble of non-overlapping elements and within each
element the solution is approximated by a truncated polynomial expansion

M
U(x,1) ~ Up(x,1) = ) u;(1)9;(x) @)
=1

where M is the number of modes defining the truncation level. The semi-discrete formulation (i.e. contin-
uous in time) employs a local discontinuous Galerkin formulation [39-42] in spatial variables within each
element ;. The weak formulation for Eq. (4) is obtained by minimizing the residual with respect to the
expansion function in an integral sense:

aU,(x,r) N
/mq:.- [—%;—+V-F(U,)Ldm_o (8)

After integrating by parts the weak statement of the problem becomes:

U, .
fn g fm Vo, -F(Up)dQx + /a o O (Uy) - nd(2) =0 ©)

The local discontinuous Galerkin approach makes use of element-based basis functions, which results
in solution approximations which are local, discontinuous, and doubled valued on each elemental interface.
Monotone numerical fluxes are used to resolve the discontinuity, providing the means of communication



N00014-04-1-0602: Efficient High-Order Accurate Methods
University of Wyoming

Figure 1: Two-dimensional illustration of projection of additional surface points for creation of curved surface element.

between adjacent elements and specification of the boundary conditions. This local character of the dis-
continuous Galerkin method simplifies tremendously the parallel implementation, as will be shown later.
The numerical flux, F*(U)) - n, is obtained as a solution of a local one-dimensional Riemann problem and
depends on the internal interface state, U;, the adjacent element interface state, U:; and the orientation as
defined by the normal vector, n, of the interface. An approximate Riemann solver is used to compute the
flux at inter-element boundaries. Current implementations include the flux difference splitting schemes of
Rusanov [43], Roe [44], HLL [45] and HLLC [46-48].

The discrete form of the local discontinuous Galerkin formulation is defined by the particular choice of
the set of basis functions, {0;,i = 1...M}. The basis set is defined on the master element Q(&;,j =1...3)
spanning between {—1 < §; < 1}. We seek a set of hierarchical basis functions in order to simplify our
subsequent spectral multigrid implementation. The basis set contains vertex, edge and bubble functions [49,
50] based on Jacobi polynomials of variable weights. Since the basis set is defined in the master element,
a coordinate transformation, x, = x,(&,&,&3), is required to compute the derivatives and the integrals in
physical space Q;(x,y,z). For iso-parametric elements, the basis functions are expressed as functions of &y,
&, and &3, and the coordinate transformation, and its Jacobian are given by:

9(x,y,2)

M
xng"lx;%(ﬁl,&z,&ﬁa Je(81,62,83) = ‘a(}‘;[,fﬂ:gs) e

In the simple case of straight-sided or -faced elements the mapping is linear and its Jacobian, J;, and its
metrics are constant within each element, and can be evaluated just by using the element vertex coordinates.
In the case of elements with curved faces, the Jacobian J; varies within the element, and must be evaluated
explicitly at the individual quadrature points in the numerical integration process. While straight-sided/faced
elements are used in the interior of the domain, curved boundary elements which conform to the original
description of the boundary geometry must be used in order to retain the p+ 1 accuracy property of the
discretization scheme. Since most mesh generation packages produce a list of elements, with coordinates
given only for the corner points of the elements, additional information is required in order to create curved
boundary elements. This is achieved by projecting additionally created surface points onto the original
boundary geometry description, as depicted in Figure 1 for the two-dimensional case.

The number of additional surface points to be created on each face is a function of the p-order of
the discretization. These points are initially created on the flat face of the non-curved geometry using
linear interpolation, and then projected onto the surface of the original defining geometry used in the grid
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generation process. Throughout this project, the VGRID grid generation program [51] is used to generate
three-dimensional unstructured tetrahedral meshes. A projection utility which snaps an arbitrary list of
points to the closest surface geometry used in VGRID was developed and provided for this purpose [52].
The correspondence between the coordinates of the new projected surface points in physical space and in
isoparametric space is then used to compute the exact Jacobian for the curved elements.

While elements with a face on the geometry boundary must be treated as curved elements, additional
neighboring elements are also required to be treated as curved elements for complete consistency. A simple
algorithm for determining the extent of the set of curved elements begins by identifying all elements with
one or more faces on the boundary. This constitutes the set of elements where all faces must be considered
curved. The second step is to propagate the cell coefficients back to all elemental faces, which might have
only one curved edge on the curved surface. The third step is to transfer all face coefficients to all adjacent
elements, even if they are not physically on the curved surface. This will guarantee that all the curvature
information is exact and matched for all elements close to the curved surface.

For the general case (i.e.curved elements), using Eq. (10), the solution expansion and the weak statement
within each element, ﬁk, becomes:

M
Up(&m,1) = Y 8;()0(81,€2,&3) 11
j=1
f ¢-a& Vil — f VoI F(U,) [Je|dSy + f OF*(U,) - n|J|0Q) =0 (12)
ﬁl‘ : ar ﬁ* Wk P aﬁ& ¢ P b
The resulting semi-discrete form, Eq. (12), can be further simplified as:
M% +R(U,) =0 (13)

where M and R(U,) represent the mass matrix and the non-linear residual associated with the master el-
ement $, respectively. This system of ordinary equations, Eq. (13), is solved in the modal space and the
integrals are evaluated by economical Gaussian quadrature rules [49, 53, 54], which requires a projection
of the solution values to the quadrature points used in the numerical integration. In order to preserve the
p+ 1 accuracy order of the numerical approximation, the element integral uses quadrature rules which are
exact for polynomial degree 2p within the master element, while the boundary integral uses quadrature rules
which are exact for polynomial degree 2p + 1 [55]. For boundary elements with curved edges or faces, the
Jacobians must be evaluated at the integration quadrature points, whereas for interior elements with straight
edges or faces, these are constant and need only be evaluated once for each element.

2.3 The Implicit Solver

For steady-state cases, the temporal derivative term may be omitted and the system of equations (Eq. (13))

associated with each element becomes:

R(U,) =0 (14)
where R(U,) now represents the non-linear steady-state residual. We use variants of an element-Jacobi
scheme to solve this system of equations. The Newton iteration associated with Eq. (14) yields at each
“n+ 1" step:

JdR "
—| AU*H = —R(®
55,) 40 e
+ +1
U7 = Up+0AU; (15)
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where . is a parameter used for robustness to keep [0 AU%™! /US|, < 10%. An element-Jacobi scheme
can be defined as an approximate Newton scheme where the full Jacobian matrix is replaced by the block
diagonal entries representing the coupling between all modes within each element, [0R/dU,] ~ [D];, thus
neglecting the coupling between neighboring element modes, which arises through the inter-element flux
evaluations. The [D] blocks represent small dense matrices associated with each grid element. These ele-
ment matrices are inverted using Gaussian elimination to produce a lower-upper (LU) factorization of each
element matrix. In the case of the three-dimensional Euler equations (Eq. (4)) the number of entries in the
block diagonal matrix ([D]) for each tetrahedral element is given in Table (1). Clearly, the growth in size
of [D] is a non-linear function of the discretization order, and dictates the memory requirement. Therefore,
in our simulations we keep the discretization order to p < 6, which should be reasonable for hydrodynamic
applications. The non-linear iteration Eq. (15) becomes:

AU = D7 (-R(Up)) (16)

This solver is denoted as the non-linear element Jacobi (NEJ). A second variant of this solver it the quasi
non-linear element Jacobi (qNJ). This variant employs “4” quasi non-linear iterations, where only the resid-
ual, R(Uf,). is updated, and the block diagonal matrices, [D”"], are kept constant throughout the outer-
iteration “n”. Therefore, the (k+ 1) step is:

AU = D71 (-R(U})) (17)

where the [D"]~! matrix is actually stored in LU factorized form. This approach is expected to yield similar
converge rates per cycle as in the NEJ variant, with improved performance in terms of CPU time, since the
expensive [D] matrix assembly and LU factorization procedure are performed less frequently. In order to
speed up the convergence, a non-linear element Gauss-Seidel approach is also possible, based on the quasi
element-Jacobi solver. Hence, a third variant of this solver is the guasi non-linear element Gauss-Seidel
(gNGS).

p | Size of [D]
5x5
20x 20
50x 50
100 x 100
175x 175
280 x 280
420 x 420

[= TN, T N S S i - |

Table 1: The size of the diagonal matrix [D] as a function of expansion order (p) for tetrahedral element.

2.4 The hp-Multigrid Approach
Multigrid methods are known as efficient techniques for accelerating convergence to steady state for both
linear and non-linear problems [56, 57], and can be applied with a suitable existing relaxation technique.
The rapid convergence property relies on an efficient reduction of the solution error on a nested sequence of
coarse grids.

The spectral multigrid approach is based on the same concepts as a traditional A-multigrid method, but
makes use of “coarser” levels which are constructed by reducing the order of accuracy of the discretization,
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rather than using physically coarser grids with fewer elements. Thus, all grid levels contain the same number
of elements, which alleviates the need to perform complex interpolation between grid levels and/or to im-
plement agglomeration-type procedures [57]. Furthermore, the formulation of the interpolation operators,
between fine and coarse grid levels, is greatly simplified when a hierarchical basis set is employed for the
solution approximation. The main advantage is due to the fact that the lower order basis functions are a sub-
set of the higher order basis (i.e. hierarchical) and the restriction and prolongation operators become simple
projection operators into a lower and higher order space, respectively [58]. Therefore their formulation is
obtained by a simple deletion or augmentation of the basis set. The restriction from fine to coarse level is
obtained by disregarding the higher order modal coefficients and transferring the values of the low order
modal coefficients exactly. Similarly, the prolongation from coarse to fine levels is obtained by setting the
high order modes to zero and injecting the values of the low order coefficients exactly.

Multigrid strategies are based on a recursive application of a two-level solution mechanism, where the
second (coarser) grid is solved exactly, and used to accelerate the solution on the finer grid [56]. Because
the exact solution of the coarse grid problem at each multigrid cycle is most often prohibitively expensive,
the recursive application of multigrid to solve the coarse grid problem offers the preferred approach for
minimizing the computational cost of the multigrid cycle, thus resulting in a complete sequence of coarser
grids. For spectral (p)-multigrid methods, the recursive application of lower order discretizations ends
with the p = 0 discretization on the same grid as the fine level problem. For relatively fine meshes, the
(exact) solution of this p = 0 problem at each multigrid cycle can become expensive, and may impede the
h-independence property of the multigrid strategy. The p = 0 problem can either be solved approximately
by employing the same number of smoothing cycles on this level as on the finer p levels, or the p =0
problem can be solved more accurately by performing a larger number of smoothing cycles at each visit to
this coarsest level. In either case, the convergence efficiency will be compromised, either due to inadequate
coarse level convergence, or to excessive coarse level solution cost. An alternative is to employ an h-
multigrid procedure to solve the coarse level problem at each multigrid cycle. In this scenario, the p-
multigrid scheme reverts to an agglomeration multigrid scheme once the p = 0 level has been reached,
making use of a complete sequence of physically coarser agglomerated grids, thus the designation hp-
multigrid. Agglomeration multigrid methods make use of an automatically generated sequence of coarser
level meshes, formed by merging together neighboring fine grid elements, using a graph algorithm. First-
order accurate (p = 0) agglomeration multigrid methods for unstructured meshes are well established and
deliver near optimal grid independent convergence rates [59]. This procedure has the potential of resulting in
a truly A- and p-independent solution strategy for high-order accurate discontinuous Galerkin discretizations.
Figure (2) illustrates a three dimensional view of a typical two level h-multigrid agglomerated (AMG)
configuration.

2.5 Parallel Implementation

In the current-day scientific computing environment, realistic three-dimensional simulations will almost
always require the use of massively parallel distributed memory computer architectures. The discontinuous
Galerkin hp-multigrid solver described in this work achieves parallelism through domain decomposition,
and uses the standard MPI message-passing library for inter-processor communication [60]. The mesh is
partitioned using the METIS graph partitioner [61] operating on the dual graph of the mesh, where the cell
centroids represent the graph vertices, and faces delimiting neighboring cells represent the graph edges.
The partitioning operation assigns groups of cells to individual partitions, and faces which border on two
cells in different partitions are said to be intersected, and are assigned uniquely to one of these partitions,

10
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Figure 2: A typical two level h-multigrid mesh configuration.

while a ghost cell is created in the partition containing the intersected face. This ghost cell corresponds to the
neighboring cell in the remote partition for the intersected face, as depicted in Figure 3, and is used as a buffer
to temporarily store the flux values computed on the face, which are then sent and accumulated to the real
image of the ghost cell in the remote partition using the MPI communication library. This approach entails
no duplication of computations in adjacent partitions, and results in the same number of operations and
exact same residual values at each iteration as the corresponding sequential algorithm. Standard techniques
for masking communication latency are employed, including packing all messages destined for the same
remote partition into a single large message, and using non-blocking send and receive calls through the MPI

Since the mesh topology is unchanged for the various p levels of the Ap-multigrid algorithm, the same
communication patterns are used for all p levels. Furthermore, no communication is required in the restric-

tion and prolongation operations between the various p-multigrid levels.

On the other hand, the agglomerated coarse levels used in the h-portion of the hp-multigrid algorithm
are all partitioned independently with METIS, and then sorted in order to maximize the overlap between
coarse and fine h-level partitions. Thus, on each agglomerated coarse h-level, a different communication
pattern is used, and additional communication patterns are required for performing the restriction and pro-
longation between the coarse and fine levels of the h-multigrid sequence. The partitioning operations and
determination of the communication patterns and buffers are performed sequentially and are precomputed

and stored prior to the initiation of the flow solution phase.

2.6 Simple flow configuration

The accuracy of the spatial discretizations and the efficiency of the solution schemes described above are
evaluated for the Euler equations using a test problem consisting of the compressible flow over a three-
dimensional bump. A series of four grids on this configuration have been generated, consisting of N = 1220,

11
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Partition Boundary

Figure 3: lllustration of intersection of mesh elements at inter-processor partition boundary, creation of ghost cell, and
communication between ghost cell and real image in remote partition.

(a) Cross-stream section (b) Stream-wise section

Figure 4: The Mach number contours for the three-dimensional bump case on 10,349 element mesh using fifth-order

accurate (p=4) discretization.

5041, and 10349 tetrahedral elements, respectively, in order to study the grid convergence of the discontinu-
ous Galerkin discretizations of various orders. For each case the solution was converged to machine zero in
the discretization error studies. Unless otherwise stated, all the simulated results are initiated with a p =0
solution obtained a priori. The full domain extends from —1 < x < 1 in the stream-wise direction, from
0 <y <1 in the vertical direction and from —1 < z < 1 in the cross-stream direction, with wall boundaries
at y = 0. All the simulation results for this configuration are performed with the HLLC flux using a single
processor machine.

2.6.1 Accuracy Validation

The aforementioned flow configuration is used to assess the accuracy of the DG discretizations. Figure (4)
shows the Mach contour lines for a free-stream Mach number of M.. = 0.5, for the p = 4 (fifth-order)
accurate discretization on the finest mesh of 10,349 cells.

12
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Figure 5: The L; norm of the entropy error as a function of: (a) &/ p-refinement; (b) CPU time.

Figure (5(a)) shows the accuracy (i.e. the L; entropy error norm) of the steady-state solution for 1st, 2nd,
3rd and 4th order accurate discretizations as a function of the number of elements. For three-dimensional
configurations the number of elements, N, is proportional to 1 /h3, where h represents an approximation of
the cell size. The asymptotic slope of these curves indicates that the optimal error convergence rate (= hPtl)
is obtained. A comparison of the computed accuracy versus CPU time is given in Figure (5(b)), where the
various p-discretizations have been converged to machine zero on the various grid configurations using the
quasi linearized element Jacobi driven multigrid scheme. In general, for a given level of accuracy, the CPU
time decreases when the approximation order is increased, with the benefit increasing for smaller accuracy
tolerances.

2.62 Multigrid Efficiency Study

In the context of the hp-multigrid methodology, the same flow configuration is considered with geometrical
parameters, boundary and initial conditions as defined in Section (2.6). The multigrid convergence efficiency
is studied for this test case using various grid sizes and for different orders of accuracy p. A multigrid V-
cycle is used, which runs through the various p level discretizations, beginning with the highest p level,
and proceeding to p=0, followed by visits to the various coarse agglomerated levels, before reversing the
process to return to the original highest p level. The number of p and h levels depends on the discretization
accuracy and mesh resolution of the problem to be solved. A total of p+1 spectral multigrid levels are used
for a p-discretization problem, and 3,4 or 5 h-levels (AMG) are considered for mesh sizes of N = 1220,
N = 5041, N = 10349 elements, respectively, using 10 element Jacobi iterations per level, in all cases.
Figure (6)a illustrates the convergence rate for a fixed mesh size of N = 10349 elements and various
orders (p = 1,2,3,4), while Figure (6)b illustrates the convergence rate for a fixed order of p = 4 over the
various coarse and fine meshes. These figures illustrate the p— and A— independence of the hp-multigrid
algorithm, with only slight increase in the total number of iterations from 23 to 25 occurring when going

13
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Figure 6: The L, norm of the residual vs. the number of multigrid cycles, for the simple flow configuration case.

from the 1220 to the 10,349 element mesh. In spite of the good performance of the Ap-multigrid on this test
case, the small mesh sizes and simple geometry make for a relatively simple problem, and the evaluation of
the solver on more complex configurations is required.
2.7 Complex flow configuration
In order to fully assess the performance of the hp-multigrid DG solver both in terms of speed of convergence
and parallel scalability, a more complex test problem consisting of low-speed flow over a three-dimensional
DLR-F6 wing-body configuration is considered. A series of three coarse to fine grids was generated on
this configuration using the VGRID grid generation program [51]. The coarse, medium and fine meshes
contain approximately 185,000, 450,000 and 2.6 million tetrahedral cells, respectively and are depicted in
Figure 7. The agglomeration procedure was used to construct 4 coarse levels for the N = 185,000 mesh,
5 coarse levels for the N = 450,000 mesh, and 6 coarse levels for the N = 2,600,000 mesh, for use in the
h-multigrid portion of the solver. These meshes were then partitioned and the computations were performed
on an in-house Linux cluster, as well as on the NASA Columbia Supercomputer.

A full multigrid variant of the Ap-multigrid solver was used exclusively. This is initiated by initializing
a p=0 solution using freestream values, and approximately solving this low-order problem using a small
number of h-multigrid cycles. The resulting flowfield is then used as the the initial condition for the solution
of a p=1 problem, which is solved using the hp-multigrid scheme, and the process is repeated recursively
until the desired p-level solution is reached. Ten multigrid cycles are used at each p-level in the full multigrid
procedure, prior to reaching the last level, after which of the order of 100 multigrid cycles are used to fully
converge the final highest p-level problem. Each multigrid cycle, in turn, consists of a V-cycle with 10
quasi-non-linear element Jacobi cycles performed on the coarsening phase of the cycle. The freestream
Mach number is taken as Mach=0.5, and the incidence is zero degrees, in order to avoid the formation of
any shock waves for this case.

For large three-dimensional problems of this type, the use of the agglomerated h-grid levels is crucial for
maintaining rapid convergence rates , since the low-order p=0 problem itself will be slowly converging in the
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Figure 7: Coarse (185,000 cells), medium (450,000 cells) and fine (2.6M cells) mesh for wing body configuration.

absence of multigrid. This is demonstrated in Figure 8, where the convergence history of the p=0 problem
on the coarse, medium and fine grid is depicted with and without the multigrid algorithm. In the single level
(non-multigrid) case, the solution of the p=0 problem is seen to require a large number of iterations, which
grows substantially as the mesh resolution is increased, reaching over 3000 cycles for the finest 2.6M cell
mesh. On the other hand, the h-multigrid scheme produces consistent grid independent convergence rates
for this problem in approximately 50 multigrid cycles. The convergence properties of the p=0 problem in
terms of number of cycles and cpu time are summarized in Table (2).

N | Single grid | AMG | No. of AMG Levels
185k 679 46 4
450k 1200 43 5
2.6m 3375 51 6

Table 2: Convergence in terms of number of iterations without and with multigrid for for fixed order p = 0 on coarse,
medium and fine meshes.

2.7.1 Multigrid Results

Figures 9 and 10 illustrate the convergence histories achieved on the three DLR-F6 wing-body meshes for
various p orders of accuracy using the full Ap-multigrid scheme. The peaks in the convergence plots cor-
respond to the transition from low to higher-order discretizations in the initial phase of the full multigrid
scheme. At each transition, the residual increases suddenly as a new higher-order discretization is initial-
ized, but quickly returns to the level observed by continuing the multigrid iterations on the original p-order
discretization. Thereafter, the higher-order discretization resumes convergence at a similar rate to the lower
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Figure 8: Comparison of convergence of p = 0 discretization (a) without and (b) with k-multigrid for coarse, medium
and fine meshes for wing-body configuration.

order discretizations.

The plots in Figure 9 reveal essentially p-independent convergence rates for all three grids, except for
the p=4 discretization which is slower to converge on the coarse 185,000 cell grid. On the finer grids,
this discretization exhibited poor robustness and could not be made to converge adequately, while the p=3
discretization failed on the finest grid and was only run successfully on the coarse and medium grids.

Figure 10 compares the convergence rates for p=1 and p=2 on all three meshes (since the higher p
discretizations failed to run on the finer meshes), showing nearly h-independent convergence rates going
from 180,000 to 2.6 million cell meshes. In all cases, the residuals are reduced 5 to 7 orders of magnitude
in under 100 Ap-multigrid cycles, by which time the lift coefficient has attained its final converged value.

The solution in terms of computed Mach contours is displayed in Figure 11 for various p orders of
accuracy and on the coarse and fine mesh, illustrating the high accuracy achievable on relatively coarse
meshes using high-order DG discretizations.

2.7.2 Computational Performance

The parallel performance of the hp-multigrid algorithm has been assessed by examining the scalability of
this solver for various orders of accuracy (from p=0 to p=4) on the coarse (185,000 cells) and fine (2.6M
cells) meshes, running on the NASA Columbia machine, using from 32 to 2008 cpus. The NASA Columbia
Supercluster consists of a collection of loosely coupled SGI Altix nodes, each containing 512 tightly con-
nected cpus. Four of these nodes are tightly coupled through a shared NUMALink4 interconnect, providing
a global shared memory image and high bandwidth over 2048 cpus [62]. While the global shared memory
image is not required in our case, due to the MPI implementation of the parallel hp-multigrid solver, the
high bandwidth interconnect is helpful for achieving good scalability on more than 512 processors.

Figure 12a depicts the parallel speedup achieved for the hp-multigrid algorithm running on the coarse
mesh of 185,000 cells, going from 32 to 1004 processors, where the 32 processor runs are assumed to
exhibit perfect speedup, in view of the fact that runs on smaller number of processors were not performed
for lack of memory at the higher orders of accuracy (p). In all cases, three h-multigrid levels are employed,

16



NO00014-04-1-0602: Efficient High-Order Accurate Methods
University of Wyoming

£ €
0’
m-l .N All‘lollllml ..m
Number ol MG-cycles Number ol MG-cycles
(a) Coarse mesh: 185,000 cells (b) Medium mesh: 450,000 cells
'
-2
10
ERE
€
_:-: 10*
107
Io-l L al e ek
20 40 50 El

Number ol MG-cycles

(c) Fine mesh: 2.6 million cells

Figure 9: The L, norm of the residual vs. number of hp-multigrid cycles for compressible flow solution on wing-body
configuration using various discretization orders and on various size meshes.
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Figure 11: Computed solution in terms of Mach contours on DLR-F6 wing body configuration.
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Figure 12: The speedup vs. the number of processors for: (a) coarse mesh; (b) fine mesh

with the appropriate number of p levels depending on the overall order of accuracy of the finest level. For
p=0 (i.e. first-order accurate), which corresponds to the traditional agglomeration h-multigrid applied to a
cell-centered finite volume scheme, scalability is seen to fall off dramatically as the number of processors
is increased. This is to be expected, since the number of elements is relatively small in this case. For
example, on 1004 cpus, the number of mesh cells per processor is less than 185 for this case. Thus, the ratio
of computation to communication is extremely small in such cases. However, as the order of accuracy is
increased, the scalability improves dramatically. For example, the second-order accurate p=1 discretization
achieves a speedup of 750 on 1004 cpus, while the higher order discretizations achieve speedups close to
950 on 1004 cpus. Results are depicted in Figure 12b for the fine 2.6 million cell mesh using up to 2008
cpus. Similar trends are observed, with the p=0 results showing a significant drop-off in scalability, while
the highest order results show near perfect scalability up to 2008 cpus, due to the increased computation to
communication ratio for this finer mesh.

On 2008 cpus, a single multigrid iteration at p=4 required 83 seconds of wallclock time, while the same
multigrid iteration at p=1 required only 1.2 seconds. This translates into an overall solution time of under
2 minutes for the p=1 case on the fine mesh, using approximately of the order of 100 multigrid cycles and
potentially 2 hours for the p = 4 case, although the p =4 (and p = 3) cases were not run to completion on
the fine mesh due to robustness issues. Note that the p = 4 case on the finest grid corresponds to a problem
with over 455 million degrees of freedom.

2.8 Extension to Implicit Time-Dependent Problems

While the above results demonstrate the efficiency of the multigrid method for steady-state problems, many
problems of interest are unsteady in nature and require the resulting spatially discretized equations to be
integrated in time. Although the use of explicit time-integration schemes has been widespread for DG
discretizations, in this work we focus on the use of implicit time-integration schemes, which are not re-
stricted by the CFL-stability limit of explicit methods, and thus are capable of using maximum time-steps
determined by accuracy considerations, and are thus more suitable for stiff problems. The implicit time-
integration schemes currently employed in this work range from first to fourth-order accurate in time, in-
cluding both first and second-order accurate multistep backwards difference formulations (BDF1, BDF2),
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the second-order accurate Crank-Nicolson or trapezoidal scheme, and a fourth-order accurate implicit mul-
tistage Runge-Kutta scheme (IRK4). The strategy used in this project has been to extend the h-p multigrid
method for use in solving the implicit system arising at each time step from these time discretizations. For
the scope of this project, the time-dependent investigations have been limited to two dimensional inviscid
problems.

Because we are concerned with obtaining highly accurate solutions, the high spatial accuracy must
be matched with high temporal accuracy, which can be achieved either by using small time steps, or by
resorting to higher-order accurate time discretizations. However, stability of time-discretization schemes is
closely related to their formal order of accuracy. The BDF1 and BDF2 schemes are both unconditionally
stable, while the CN2 scheme is A-stable, but not L-stable [63]. For these reasons, CN2 has often been
shunned in favor of BDF2 in many computational fluid dynamics problems. However, the lack of L-stability
may be acceptable particularly for problems with smooth solutions, and the scheme is therefore included
in the present study. Because higher-order multistep backwards difference schemes beyond second-order
are not A-stable, we choose to investigate the use of implicit Runge Kutta schemes for achieving higher
temporal accuracy. A six-stage diagonally implicit IRK scheme is chosen which is fourth-order accurate
in time. While this scheme may not necessarily represent the optimal fourth-order temporal scheme for all
problems, it has been designed with stiff stability and accuracy considerations in mind [64], and has been
used successfully on lower-order finite volume schemes by various authors [65, 66]. One of the drawbacks
of IRK methods is their expense, since these require the solution of multiple implicit problems at each time
step (one per stage), as opposed to BDF and CN schemes which only require the solution of a single implicit
problem per time step. Therefore, one of the objectives of this work is to determine if IRK schemes can be
competitive or superior to lower-order schemes when used in conjunction with efficient solvers, particularly
when high accuracy is required.

Starting from the set of ordinary differential equations given by equation (13), the formulations for
BDFI1, BDF2 and CN2 schemes are given respectively as:

M

A (W —uf) + Ry (') =0 (18)
M /3 1
E(Eu;“—zu:+5u,,-‘)+n,,(ug+') =0 (19)
M n n I n 1 n
v (uit! —uj) + >Rp (wit') + 7Rp () =0 (20

where Af represents the integration time step, and uj and u:“ are numerical solutions for the current and the

next (unknown) time step, respectively. By defining a nonlinear unsteady residual, R, for the corresponding
BDFI1, BDF2 and CN2 schemes as:

BDF1: R.(u}t!) = gu:"'l—}-Rp(u;“)—-%uz:O (21)
n M 3 n n M n l n—
BDF2: R.(u}t!) = E(Euk*"}—}-Rp(uﬁ*')——A—r~(2uh—§uh =0 (22)
M 1 M, 1
CN2: R(ul*l) = Euﬁ“+5Rp(ug+‘)—(5u;‘,—§r{p(ug))=0 (23)

the solution of these schemes can be achieved by solving the nonlinear problems Re(uﬁ“) = ( at each time

step.
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These schemes are relatively efficient because they solve only one implicit set of equations per time step. In
the case of multistage IRK schemes, however, multiple implicit problems are required per time step (each
stage works on one implicit system solution), but these schemes are easily implemented in the presence
of variable time steps and can be constructed to be A- and L-stable for any temporal order. In this paper,
we utilize the ESDIRK class of RK schemes, which corresponds to Explicit first stage, Single Diagonal
coefficient, diagonally Implicit Runge-Kutta. The formula for a S-stage ESDIRK scheme, in the case of the
Euler equations, can be written as,

(i) u®= uj
(1) Fors=1,---,8
ul) =u"— MY, as;M~'R,(u'))

(iii) ult! =ul)
where a;; are the Butcher coefficients of the scheme. The Butcher table for the six-stage ESDIRK scheme
(S = 6, fourth-order accurate) employed presently is shown in Table 3 and the values are given in references
[65, 66]. The set of coefficients, ag;, defines the implicit RK schemes (as shown in Eq.(24)). The first stage
is explicit due to a;; = 0. A single implicit scheme is solved at each individual stage since the set of a;; has
the form of a lower triangular matrix. The solution in the last stage is the solution for the next time step and
¢k represents the point in the time interval, [t,7 4+ Af] and satisfies,

(24)

k
Ck=zakj (k21721:6) (25)
J=1

Similarly, the unsteady residual corresponding to the non-linear implicit system at each stage of the IRK4
scheme can be written as,

M
Re(“m) = &-n(’)+a“Rp(u(‘])
M s—1 ’
- Euﬂ—):aunp(u(ﬂ) =0 (s=1,.,6) (26)
j=1

The basic approach is to modify the h-p multigrid algorithm for use in driving the unsteady residuals
defined in equations (21), (22), (23), and (26) to zero, in the place of the steady state residual, at each
physical time step.

Two test cases are used to illustrate the performance of the proposed solution techniques for the time-
dependent compressible Euler equations. The first test case consists of an isentropic convecting vortex on a
uniform mesh, while the second test case consists of the time-dependent vortex shedding from a triangular
wedge on a highly graded unstructured mesh.

2.8.1 Vortex Convection Case

The convection of a 2-D inviscid isentropic vortex [67-69] is simulated to examine the performance of
the proposed implicit time-stepping schemes. The exact solution for this test case at any time f is the
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Table 3: Butcher Tableau for ESDIRK class of six-stage RK schemes

=0 0 0 0 0 0 0
c2 as ay = agg 0 0 0 0
€3 as ayn as3 = age 0 0 0
c4 as) as ass A44 = ag6 0 0
cs asi asy as3 asq ass=ags 0O

c6=1|as1=b ap=by ap=>by ass=bs ags=>bs aes

ut! by by by by bs be

initial solution at #o = O translated over a distance u..t for a horizontally convecting vortex, which provides
a valuable reference for measuring the accuracy of the computed solution. The mean flow density, pe,
velocity, u.. and v.., pressure, p.. and temperature 7., are taken as freestream values, which are set as
(Pooy tooy Voo, Pooy Tow) = (1,0.5,0,1,1) in this test case. Freestream boundary conditions are imposed on the
top and bottom boundaries, while periodic boundary conditions are applied between the inlet and outlet of
the domain. These boundary conditions are applied on all levels of the multigrid sequence. At 7y = 0, the
flow is perturbed by an isentropic vortex (8u,dv,dT) centered at (xp,y,) with the form:

ou = -%(y ~y0)e¢“_'1) (27)

Sy = %(x—xo)e"“_’l) (28)
2(n

8T = —%ezﬂ’-*) (29)

where, ¢ and o are parameters which determine the strength of the vortex, r = /(x —x0)% + (y — yo)? is
the distance to the vortex center, and Y= 1.4 is the ratio of specific heats of air. In this study, we set ¢ as
unity and o as 4.0. Given the perturbation functions shown in Eq. (27), (28) and (29), we can determine the
other resulting conservative variables, assuming isentropic flow throughout the domain (i.e. p/pY = 1 and
T = p/p for a perfect gas):

Bk 1/(y-1)
p=TY0) = (T, +8T)/0-1) = [1 - %ezw-ﬂ] (30)
U= e+ B = 0.5 — = (y — o)1) 31)
m
= .. (1)
V=Ve+0r=0+ ﬁ(x—xg)e (32)

This test case employs a uniform Cartesian triangular grid. The initial vortex is placed at (xo,yy) = (0,0)
on a domain of —7 <x <7 and —3.5 <y < 3.5 with 10000 elements, as shown in Fig. 13. A fifth-order
accurate (p = 4) spatial discretization is used in all cases, and the time-step (A7) is set equal to 0.2. Since
the local CFL number is defined as,
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Figure 13: Grid and initial density contours for isentropic vortex convection problem

At 3edges
CFLi=— Y (lu-n|+c); 1<i<nElem (33)
vof,- j=1 J
where vol denotes the area of the element in the 2D case and c is the local speed of sound, then the fixed
time-step At = 0.2 corresponds to a maximum CFL number of 11. Note that for the considered spatial
discretization (p=4, fifth-order accurate), the explicit stability limit could be as much as 176 times smaller
(ie. ~ ’—,'5) than our chosen time step.

We begin by examining the error of the respective time-integration schemes at a fixed time-step size, in
order to determine if these schemes are within or close to their asymptotic regions of convergence. This is
important since the error properties of these schemes are asymptotic in nature, based on the presumption of
smooth solutions, and there is no guarantee that higher-order methods will deliver smaller errors than lower
order methods, even at equivalent time steps, when these assumptions do not hold.

Fig. 13 illustrates the computational mesh and the initial density contours in the domain. The length of
the domain is 14, and the horizontal velocity is u.. = 0.5, thus the vortex requires T = 28 to complete one
revolution around the periodic grid in the x-direction.

A quantitative comparison is given in Fig. 14, where the density profiles along the horizontal centerline
(y = 0) for the BDF1, BDF2, CN2 and IRK4 time-integration schemes at various times, t =4, t = 10, t = 20,
and ¢t = 50, are compared with the exact solution, obtained by translating the initial centerline density profile
to the appropriate spatial location for each given time. From the figure, it can be seen that the IRK4 scheme
exhibits the best resolution and provides very good agreement with the exact solution, since there is no visual
deviation between the computed results and exact results and the vortex core is well conserved. On the other
hand, the BDF1 scheme which is only first-order accurate in time, produces rapid dissipation of the vortex
core, as mentioned previously, while the BDF2 and CN2 schemes provide substantially better resolution
and higher accuracy than the BDF1 scheme. Before ¢t = 20, the computed results obtained by the BDF2
and CN2 schemes fall almost on top of the exact solution, but at later times, these schemes show increased
deviations from the exact profile, although the CN2 scheme remains substantially more accurate than the
BDF2 scheme. However, this result must be balanced by the fact that the CN2 scheme is not L-stable [63],
and may perform poorly in other cases.

In order to assess the asymptotic behavior of the time-integration schemes, a temporal refinement study
is carried out using the same fixed spatial discretization (p =4 ). Because the overall error is due to both
spatial and temporal error, the “exact” numerical solution for each temporal scheme is obtained using a
small time-step reference solution, in order to eliminate the effect of spatial error and to isolate the temporal
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(c) =20 (d) =50

Figure 14: Comparison of density profiles for the BDF1, BDF2, CN2 and IRK4 schemes at t=4, 1=10, t=20 and (=50,
using a time-step of Ar=0.2

error. The time-step to obtain the "exact” solution is Az = 0.01 for all time-integration schemes. Various
time-steps, consisting of Ar = 2.0, 1.0, 0.5 and 0.25, which correspond to a maximum CFL number of 110,
55, 28 and 14, respectively, have been used for all of the temporal schemes. Additionally, two smaller time-
steps, Ar = 0.125 and 0.0625 are employed for the BDF1, BDF2 and CN2 schemes to extend their range of
comparison. A regular mesh with a grid spacing of Ax = Ay = 0.25 and a total of 3136 elements is employed
for this study. The temporal error is obtained by computing the RMS difference of all conserved variables
at all grid points between the computed solution and the reference exact solution.

The temporal accuracy results for the BDF1, BDF2, CN2 and IRK4 schemes at t = 4 are illustrated in
Fig. 15(a), where the computed temporal error is plotted as a function of the time-step on a log-log plot. The
first-order backwards differencing scheme displays a slope of 1.0. The second-order backwards differencing
scheme and the Crank-Nicholson scheme demonstrate similar slopes of 1.9 and 2.0, respectively, although
the CN2 scheme is consistently more accurate in absolute terms than the BDF2 scheme. The fourth-order
Runge-Kutta scheme exhibits a slope of 3.82, which is close to the design value of 4. For any given time-step
size, the IRK4 scheme achieves higher accuracy than the BDF1, BDF2 and CN2 schemes, while the BDF2
and CN2 schemes provide better accuracy than BDF1. For example, using a time-step size of Ar = 0.25,
the IRK4 scheme attains a temporal error of approximately 10~6 while all the other schemes incur temporal
errors larger than 3 x 1074,

These results demonstrate that the chosen temporal discretization schemes achieve their design order of
accuracy within the range of time steps of interest and for high-order spatial discretizations. On the other
hand, since the higher-order temporal schemes (particularly the IRK scheme) are more expensive than the
lower order schemes, the more practical consideration of computational efficiency of these schemes for a
prescribed error tolerance must be addressed. This is done in Figure 15(b), where the accuracy achieved
by each implicit time integration scheme is plotted versus cpu time in the place of time-step size. The
differences between the various schemes are now reduced compared to the comparisons based on time step
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Figure 15: (a) Comparisons of temporal accuracy for various implicit temporal schemes as a function of time-step size
att = 4. (b) Comparisons of temporal accuracy for various implicit temporal schemes as a function of cpu time.

size, due to the fact that the more accurate schemes such as the implicit Runge-Kutta scheme requires
five implicit solves per time step, compared to the BDF and CN2 schemes. Nevertheless, as the accuracy
requirements are increased, the asymptotic nature of the IRK scheme, where error decreases fastest versus
time step size, ensures that this scheme becomes the most efficient overall for small error tolerances.

2.8.2 Shedding flow over a triangular wedge

The next test case involves the problem of vortex shedding over a triangular wedge. Because of the inviscid
nature of the flow simulation, a triangular geometry is chosen in order to ensure that vortices are produced
due to separation at sharp corners. In addition to representing a more realistic test case, involving a highly
graded unstructured mesh, this case is also used to study the performance of the various temporal schemes
in combination with low and higher-order spatial discretizations, thus focusing on the interplay between
spatial and temporal errors. The geometry consists of a triangular wedge placed on the centerline y = 0
of the computational domain, which contains 10,836 unstructured triangular elements, with the ratio of the
smallest to largest cell area being 1425:1 (which corresponds to an explicit CFL ratio of 38:1). The flow is
inviscid, and a uniform freestream Mach number of 0.2 is applied as the initial condition. Since our principal
focus in these calculations is the ability of these schemes in retaining the shape of the vortices as these are
convected downstream from the wedge, and in order to reduce the occurrence of initial discontinuities near
the surface of the wedge which would be produced with a uniform freestream initial condition and would be
detrimental for high-order spatial discretizations, we first employ a p = 0 spatial discretization and BDF2
temporal scheme, utilizing a uniform-flow initial condition: u(x,t = 0) = ue = 0.5, v(x, =0) = ve. = 0,
p(x,2 = 0) = p = 1.0 (as shown in Fig. 16(a)), to obtain an intermediate solution (shown in Fig. 16(b)), in
which the formed vortices have not yet separated. Then, this intermediate solution is applied as the initial
condition to all other high-order p = 1 and p = 3 spatial-discretization schemes, using either the BDF2 or
IRK4 time-integration schemes.
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(a) mesh and uniform flow (b) intermediate solution

Figure 16: Mesh and density contours for uniform flow and intermediate solution obtained using p = 0 scheme

@p=1 () p=3

Figure 17: Density contours of p=1 and p=3 spatial-discretization schemes, at t=100, using BDF2 scheme and Ar =
0.05

(@p=1 (b) p=3

Figure 18: Density contours of p=1 and p=3 spatial-discretization schemes, at t=100, using IRK4 scheme and Ar =
0.05
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Figure 19: Comparison of the temporal accuracy as a function of time-step size for the BDF2 and IRK4 schemes at
t = 0.1 (a) for p=1 spatial discretization, (b) for p=3 spatial discretization.

Starting with the computed intermediate solution as the initial condition, Figures 17 and 18 depict the
numerical results at t = 100 for p = 1 and p = 3 spatial discretizations using the BDF2 and IRK4 time-
integration schemes with the same fixed time-step size of At = 0.05, respectively. It can be observed that
for a fixed temporal scheme (either the BDF2 or IRK4 scheme), the higher-order accurate p = 3 spatial
scheme provides the best shape-retaining convection capability: the vortices produced around the corners
of the triangle wedge keep their shapes far downstream. On the other hand, the p = 1 scheme is relatively
dissipative as seen by the diffusion of the core of the vortices as they are convected downstream. While
the improvement in the solution due to the increase in spatial discretization order is evident, any solution
changes due to the use of higher-order temporal schemes are less evident in these qualitative illustrations.

In order to assess the accuracy of our temporal discretizations, we perform a temporal refinement study,
similar to that described for the previous test case. The temporal error is isolated by producing a reference
"exact” numerical solution, using a small time-step size of Az = 2 x 10~* for each temporal and spatial dis-
cretization. Using the same initial and boundary conditions as described above, computations are performed
using time-step sizes from 0.05 to 5 x 10~ and the error is measured at t = 0.1. The results shown in Fig
19 indicate that the design accuracy of the BDF2 and IRK4 schemes is approached in both cases, yield-
ing curve slopes of 1.92 and 3.96 in the case of the second-order accurate (p=1) spatial discretization, and
1.72 and 3.96 in the case of the fourth-order accurate (p=3) spatial discretization, for the BDF2 and IRK4
temporal schemes, respectively. However, it is notable that the absolute temporal errors of both temporal
schemes are consistently smaller for the second-order accurate (p=1) spatial discretization as compared to
the higher-order spatial discretization case.

While the implicit scheme requires relatively few time steps compared to the explicit scheme, the cpu
time required for a single explicit time step is much lower than that required for an implicit time step, since
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Table 4: Explicit-implicit comparison for the shedding flow case

for solution at r = 2.5 | time-step size | time steps | convergence limit | cpu time (s)
implicit (BDF2) At =0.05 50 110~ 5160
explicit (FD2) At=5x10"°| 50000 - 22920

only a residual evaluation is required in the explicit case, as opposed to the solution of a large non-linear
system of equations in the implicit case. Nevertheless, the results in Table 4 show that the implicit time-
integration scheme requires 4.4 times less cpu time to integrate the solution to the non-dimensional time
t = 2.5 compared to the explicit approach in this case. However, this comparison is only qualitative in
nature, since the temporal accuracy of the two approaches is not matched, and the cpu time required by the
implicit approach is strongly dependent on the level of convergence required of the inner iterations for the
implicit solver. However, the performance of the explicit scheme is determined by stability considerations,
which will be detrimental when the resulting temporal accuracy imposed by the stability limit is not closely
related to the desired temporal accuracy.

2.9 Extension to Diffusion Problems and the Navier-Stokes equations

The DG method has been initially developed for hyperbolic problems. Its use for problems involving diffu-
sion is relatively recent, and was delayed by the lack of an obvious way to compute viscous interface fluxes
between neighboring elements (i.e. the lack of a "viscous Riemann solver”). In this project, we have con-
sidered various approaches to extending our DG methodology to viscous flows, including the Navier-Stokes
equations.

2.9.1 Unified Inviscid-Viscous Flux Formulation

We discuss here briefly (only in a one-dimensional framework) a methodology to devise stable interface
conditions that reduces to the inviscid Riemann solve in the limit when the viscosity tends to zero. Such
methodology has the advantage that it can be easily incorporated in existing DG codes. This research topic
constitutes the basis for the PhD thesis of A. Rahunanthan, a graduate student that was supported from this
grant and who is expected to graduate in Fall 2008.

In order to study well-posedness, it is sufficient to consider a locally linearized, constant coefficient
version of the full problem. The dependent variables appearing in the subsequent equations can therefore
be considered as perturbations around a mean value, unless otherwise specified. Let us first consider the
one-dimensional scalar linear advection-diffusion equation

QE +aa—w — eazw

ot ox o’
where a and € > 0 are constants. Multiplying the equation with w and integrating in [—1,1], one can easily
obtain

x€[-1,1] (34)

1d|jwl3

1 1
T = _Ewwxxdx—[ awwydx =

—1

1
v [4 a]. [ = 35
8/_] [aiwwx)—wx] —/;lawwxdx— (35)

- (Ewwx = iwz)ml = ((-:‘rmvv,r = ng)x:_l —&||wx|[3
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It follows that the PDE is well-posed if:
L
(eww, Sw )x=_| >0 (36)
G .y
(swwJr = )x=1 <0 (37)
For the purely hyperbolic case € = 0, these relations reduce to
a
- % 38
(3")... 50 a8
a
= >
(3)..2° &)
and it follows that for @ > 0 one needs to set w = 0 at x = —1, whereas for a < 0 one needs w = 0 at

x = 1. Since w represents a perturbation to the mean value of the dependent variable, the meaning of
these two conditions is that for the case a > 0 one needs to specify the value of the dependent variable
at x = —1, while for @ < 0 one needs to specify the value of the dependent variable at x = 1, as is well
known for the linear advection equation. In order to develop boundary conditions for the parabolic case
that reduce to the advection case when € = 0, let us first notice that the boundary term can also be written
w(€w, —a/2w). Then one has the following two relevant cases: (1) a > 0 Set w = 0 for x = —1, and require
(wewy, —a/2w?),=1 < 0. A sufficient condition for the latter to hold is wy =0 atx = —1. (2)a < 0 Set w =0
for x = 1, and require (wew, —a/2w?),=—1 > 0. A sufficient condition for the latter to hold is wy = 0 at
x=1.

These boundary conditions can be seen to represent Dirichlet (w = 0) and Neumann (w, = 0) type of
boundary conditions, respectively, for the full dependent variable «, the perturbation of which is w. hey can
be easily incorporated in DG approximations of the linear advection-diffusion equation. Consider an inter-
face between two elements, and let the value of the dependent variable computed from the element situated
immediately left of the interface be denoted by u”, the one from the right by u®. The same superscripts are
used to denote the two different values of the space derivative. It then follows that the interface values for
the dependent variable and its derivative, which are denoted by a star superscript, should be computed as
follows: (1) @ > 0, u* = u*,u} = uf. (2) a <0, u* = u®,u} = ut. Numerical results in figure 20 show the
eigenvalues of the discrete operator obtained by the use of the above interface conditions versus the stability
regions of the time discretization method.

2.9.2 Interior Penalty Method

An alternate approach for extending purely hyperbolic DG discretizations to viscous flows is afforded by
the interior penalty (IP) method. This method is among the simplest approach for discretizing diffusion
problems in the context of a DG discretization and has a long history of development [70]. One of the desir-
able features of the IP method is that it retains the nearest neighbor stencil of the original DG discretization
applied to hyperbolic problems. On the other hand, the IP approach involves the definition and use of a
penalty parameter, which is required for stability. The choice of the penalty parameter has been mostly
heuristic or empirical in most previous work, and this has been considered one of the principal drawbacks
of this approach. However, recently, an explicit expression for the penalty parameter has been derived and
validated [71], removing much of the empiricism of this approach. The two-dimensional steady-state h-p
multigrid solver described previously has been extended to solve the Navier-Stokes equations using the [P
method to discretize the viscous terms in the Navier-Stokes equations. This effort was undertaken near the
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w

Figure 20: The eigenvalue spectra are plotted in the complex plane for the flux constructed by imposing stability. The
solid lines show the stability regions of the classic Runge-Kutta schemes. The figures on the left show the eigen values
spectrum for a = 1.0 and & = 10~2; The figures on the right show the eigen values spectrum fora = 1.0 and € = 103,
The figures from top to bottom show the numerical results obtained using 2,3 and 4 Gauss-Legendre points in the DG
approximations, respectively. :
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Figure 21: Solution of viscous flow over NACA0012 airfoil at Mach=0.5, Reynolds number=5,000 and zero degrees
incidence. (a) Solution using interior penalty method with p=1 (second-order accurate). (b) Solution using interior
penalty method with p=3 (fourth-order accurate). (c) Triangular mesh containing 1,822 isotropic elements.

end of the project period of performance, and only preliminary results are available at this time. The laminar
viscous flow over a NACA0012 airfoil was computed at a mach number of 0.5, and a Reynolds number of
5000 on a triangular mesh of 1,822 elements, which is depicted in Figure 21(a). The solution of the Navier-
Stokes equations for this case, using a p=1 (second-order accurate) discretization is shown in Figure 21(b),
while the corresponding p=3 (fourth-order accurate) solution on the same mesh in shown in Figure 21(c).
While the second-order accurate solution displays non-smooth contours in the aft region of the airfoil, the
fourth-order accurate solution is found to be very smooth. For this case, the flow is known to separate at
81% chord, from previous highly resolved finite-volume computations [72], and the p=3 results are found to
agree closely with this value. The smoothness and accuracy of these results is notable particularly in light of
the coarseness of the employed mesh, as well as the use of isotropic elements throughout the domain, even
in the presence of thin shear layers.
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2.10 p-Multigrid for Nodal DG Approximation

Initial DG formulations [73] used as degrees of freedom the coefficients of the solution in a polynomial
basis expansion (i.e. Legendre polynomials in one space dimension). This modal formulation seems more
intuitive, but has a large drawback for nonlinear problems: to compute nonlinear fluxes, one needs to first
compute the value of the solution by evaluating the polynomial expansion at the flux integration points, then
evaluate the fluxes. Researchers realized later that this translation from modal space into physical space can
be avoided through a collocation (nodal) formulation. In the latter framework the degrees of freedom are
the values of the solution at the collocation points, so the flux values can be evaluated easily, in particular if
the collocation points are chosen to coincide with the integration points [74, 75]. In the context of multigrid
methods, the modal DG formulation again is more intuitive: the polynomial-type basis functions can be
embedded hierarchically, and a p-multigrid approach is natural (the restriction operator for example just
neglects extra modes); this is the approach taken in the work described in the previous sections. However,
due to the advantage of the nodal approach for nonlinear problems, we investigated the feasibility of a p-
type multigrid method in this latter formulation; such an investigation had not been reported previously in
the literature. We considered the following initial-boundary value problem as our model problem:

%Q.;.V.F:S‘ in QxR (40)
Olaaxr+ =8, 1)
Q(X,f = 0) == Qﬂ(x): (42)

where 0, F and S are the state, flux and source vectors, respectively and Q is a bounded spatial region in
R4, d = 1,2,3. Subdividing the domain of interest into non-overlapping elements to enable the accurate res-
olution of the approximate solution curve with a minimum number of elements, and mapping each element
is individually onto the master element [—1, 1] using a linear transformation, the equation (40) becomes

d d
§Q+a—éF—-S (43)

where the new variables are the transformed components of the state and source vector
=710, 5§=I1§

and J = dx/d&. A spectral approximation is constructed by use of the basis of Lagrange interpolants

o= ] E__—gj, 0i(&;) = 8y (44)
J=0,j#i 5 T 5
through the n+ 1 Gauss-Legendre quadrature points &;,i = 0, 1,--+ ,n. The discontinuous Galerkin approx-
imation (see, for example, [74]) approximates the solution, flux and source by polynomials in a trial space
f
n
Q&1 = Y ai(n$i(8) (45)
i=0
where the nodal values of the flux and source are computed from the nodal values of the solution, g;(t), at
the Gauss-Legendre quadrature point &; and time ¢, i.e.

fit) =F(Q&:1)) =F(qi(r)),  si(t) =S(Q(&:1)) = S(qu(r)).
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Doing a Galerkin projection and using discrete orthogonality relations between Legendre polynomials, the
final discrete form of the equations governing each variable at the Legendre-Gauss points can be written as

d
7% =N)) (46)
where j=0,1,---,n and
U do, I
Ma) = 1oy [ FQLde=1/alFolli+1/0; [ Sty @
= Y feon/w;0;(&) — 1/@;[Fo;)L, +s;. (48)
k=0

In p-multigrid, higher order (p) and lower order (p — 1) interpolants serve as the fine and coarse grids,
respectively. Consider the solution of the discrete problem on the fine grid

d
ey P P
" =N@) (49)

where u? is the discrete solution vector for p' order interpolation on a given grid. The current approximation
of the solution u” is denoted as #P, which is obtained by approximately solving (49) by using the nodal
discontinuous Galerkin method. Since &#” does not satisfy the above equation exactly, its substitution into
equation (49) yields

N(@?) - %ﬁp =

where r” is the discrete residual. For the solution of steady-state problems, we are only concerned with the
final state where all time derivatives vanish. Thus the discrete residual becomes

rP = N(iP). (50)

The main difficulty resides in defining the restriction and prolongation operators. We discuss this briefly
here, and refer to [76] for full details. Since the polynomial approximation spaces are nested, we can write
the i** basis function of order p— 1, ¢/, in terms of the basis functions of higher order p, {¢”}:

-1 -1
o =§¢f (E7)47- (51)
To form the residual restriction operator, we return to the definition of the residual vector from (47), (50):
1 d j.’ ] 1
= 1/af /:lFEg—d&—1/wf[F¢§]_,+l/mf[]S¢fdé. (52)

Given r? we need to determine r?~! = fg‘lr”. Writing out rf'l like (52) and using (51) yields

7 = L0 @)ef /o).

J

Thus, the residual restriction operator is
P = o (53)

off' = o€}/l
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The prolongation operator, / ;_,, transfers uP~! to the next finer level. Thus, we seek a representation of
the coarse level solution on the finer level [58]. That is, we wish to calculate u? such that

Yuheh = Yulep (54)
J i
W = () (55)
Using (51) and (54) we have
Tuief = Yul T Yo E))e]
J i J
= Y Yo' €l (56)
T
Since a state representation is unique in the basis &7, from (55) and (56) it must be the case that

(F_1)ji= ¢f_l(§f)-

Numerical tests with these transfer operators indicate that for some problems the nodal DG method may
offer advantages over the modal DG method. Results for a solution of the Euler equations are reported in
Table 5 and Figure 22.

Table 5: nodal DG vs. modal DG for the fixed order p =4

CPU time (sec) num of iterations
num of elements 10 20 40 10 20 40
nodal DG | 26.57 190.36 304.85 | 1925 7231 5794
saving | 17.3% 20.0% 20.8% . . .
modal DG | 32.14 238.01 385.01 | 1927 7202 5821

2.11 Adjoint-Based Error Estimation and Adaptivity

As mentioned in the introduction, one of the advantages of the use of unstructured meshes is the possibil-
ity of easily performing adaptive mesh refinement for improved accuracy. For higher-order methods, the
order of the discretization may also be modified adaptively and locally in order to improve accuracy. The
combination of mesh refinement (h-refinement) and changing the order of accuracy of the discretization
(p-refinement), known as h-p adaptivity, has been shown to lead to asymptotically optimal error reduction
in the literature [31]. However, one of the principal obstacles towards effective use of all adaptive methods
lies in the ability to formulate effective and reliable error estimation procedures for driving the adaptive
refinement process.

Rather than attempting to quantify the discretization error at every point in the mesh for adaptive re-
finement criteria, an alternative approach involving adjoint-based error prediction methods has been gaining
popularity recently [33-35]. In this approach, solution of the adjoint of the governing flow equations is
used to quantify the sensitivity of an objective function with respect to local grid resolution throughout the
domain. This approach to mesh refinement is non-local, in the respect that it provides for the global effect
of local resolution changes. Objective functions representing engineering quantities of interest such as lift,
drag, or L/D, can be constructed, thus enabling the mesh refinement process to target quantities of inter-
est. Since vastly different grid resolution distributions are required for different engineering applications of
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Figure 22: Nodal DG vs. modal DG in CPU time (top) and the number of iterations (bottom) when the number of
elements varies for the fixed order p = 4. The percentages are savings in CPU time for nodal DG.
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the same problem, this approach enables accurate and efficient engineering results by avoiding excessive
resolution in areas of little influence on the quantity of interest.

In order to estimate the error in an output functional such as drag or lift, the adjoint solution for this
quantity must first be computed. The change in the output functional which would occur if the mesh was
uniformly refined can then be estimated by interpolating the flow solution computed on the current mesh to a
fully refined mesh, and computing the residual on this refined mesh. Because the interpolated solution does
not correspond to the more accurate solution which would be obtained by solving the discretized equations
on the finer mesh, the equations on the finer mesh are not satisfied by the interpolated solution and a non-
zero residual field is obtained. The error in the output functional (i.e. the change in the functional which
would be observed if the flow was solved on the fully refined mesh) is then given as the inner product
between the non-zero residual field and the adjoint solution field [77, 78]. Futhermore, the contribution
from each cell in the mesh to this inner product can be taken as an estimate of the local error contribution
to the output functional. Thus, in order to adaptively reduce the error in the output functional, a suitable
mesh refinement strategy is one which flags cells with large relative contributions to the inner product error
estimate for refinement.

The adjoint error estimation procedure described above is obviously intended for driving an h-refinement
procedure. However, a similar adjoint error estimation technique can be used to drive a p-refinement proce-
dure. In this approach, a p-order solution is first computed, and then a p+1 order solution is reconstructed
using gradient reconstruction techniques [78]. When this reconstructed solution is substituted into the p+1
discretization equations, non-zero residuals are obtained and the error estimate is given as the inner product
between the adjoint solution and non-zero residual vector.

In the current project, both h-refinement and p-refinement adjoint-based error criteria have been imple-
mented. The adjoint equations themselves are obtained by linearizing the discrete equations of the analysis
problem and then transposing the resulting Jacobian matrices. Because the many of the terms in the full
Jacobian are already computed for the implicit element Jacobi scheme used in the solver, this task was rel-
atively straight-forward. Once the adjoint equations are assembled, the solution of the adjoint problem is
carried out using the h-p multigrid approach, following the strategy used to solve the flow equations, and
resulting in similar convergence rates for the flow and adjoint problems.

Figure 23 illustrates both h- and p-refinement procedures for an inviscid flow test case in two dimen-
sions. The configuration consists of an idealized four element airfoil geometry, which results in strong local
gradients in the flow field and illustrates well the advantages of unstructured meshes for such configura-
tions. The Mach number for this case is 0.2, and the incidence is 0 degrees. The initial mesh contains 1,590
elements, and was originally run with a p=0 discretization. The targeted output functional is the drag coeffi-
cient, which ideally should be zero for this two-dimensional inviscid flow. The adjoint solution for the drag
coefficient is computed and used to drive the adaptation procedure in all cases. The refined mesh obtained
after three refinement passes is shown in Figure 23(a), using a fixed p=0 discretization, while the h-refined
mesh using a fixed p=2 discretization is shown in Figure 23(b). As expected, much of the refinement occurs
near the airfoil surfaces, particularly near the leading edges, and the amount of refinement is substantially
reduced for the p=2 discretization. Figure 23(c) depicts the p-refinement distribution obtained for the same
problem using a fixed mesh resolution, but variable p-order discretization throughout the domain, as deter-
mined by the adjoint error estimation technique. While much of the domain contains relatively low (p=0,
p=1) order discretizations, the critical areas near the airfoil surfaces and leading edges are seen to employ up
to p=3 discretizations. Figure 23(d) illustrates the computed solution for the p-adaptive test case, showing
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good resolution of all flow features on this relatively coarse grid. The distribution of error in the drag coeffi-
cient as predicted by the adjoint procedure is shown in Figures 23(e) and (f), for the initial calculation (p=0)
and the final p-adaped calculation, illustrating the spatial distribution of error and its reduction through the
adaptive process.
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Figure 23: h- and p-adaptive mesh refinement for low-speed inviscid flow over idealized four element airfoil geometry
using adjoint error estimation based on drag coefficient. (a) Adaptively h-refined mesh for constant p=0 discretization.
(b) Adaptively h-refined mesh for constant p=2 discretization. (c) Adaptive p-distribution for p-refinement scheme using
fixed mesh resolution (k). (d) Computed Mach contours for p-adaptive case. (e) Error distribution computed with
adjoint formulation for output drag coefficient on initial mesh and discretization. (f) Error distribution computed with
adjoint formulation for output drag coefficient on final p-adaptive discretization.

While the incorporation of adjoint methods for driving h and p adaptive refinement techniques has been
pursued in this project, techniques for optimally combining h and p refinement remain under investigation.
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3. Conclusions and Further Work

The work performed under this project has significantly advanced our understanding of solution techniques
for high-order discretizations suitable for industrial flow problems. On the one hand, we have shown that
the h-p multigrid approach delivers optimal convergence rates, which are both insensitive to the order of
accuracy p of the discretization, and of the level h of mesh resolution, even for relatively large problems
in three dimensions. Additionally, this approach has been shown to scale very well on current day parallel
computers, using up to 2000 processors. On the other hand, robustness issues were encountered particularly
for the larger three-dimensional problems using the higher order accurate discretizations, and these issues
remain to be investigated. Resolution of these effects may likely require the use of limiters for locally
reducing the order of accuracy of the discretization in non-smooth regions, or the addition of artificial
diffusion, or the use of filtering. While the performance of the h-p multigrid solver is near optimal in terms
of convergence per cycle, the cost of the element Jacobi smoother used within each cycle grows significantly
with increasing order of accuracy p, and the development of less computationally intensive smoothers which
maintain these optimal convergence rates remains an active area of research.

In this project, we have also demonstrated the extension of the h-p multigrid approach to viscous flow
problems, unsteady problems, and for nodal DG formulations. In order to develop a production level high-
order accurate solver, the current techniques must all be extended into three dimensions, and suitable tur-
bulence models or sub-grid scale models must be implemented for turbulent flow simulations. The work
performed in this project is currently being leveraged in an on-going NASA funded project for high-order
accurate methods for high-speed flows, and will form the basis for a three-dimensional Navier-Stokes DG
solver.

The adjoint error estimation and adaptivity techniques developed in this project hold great promise for
improving the accuracy and reliability of engineering simulations where a small number of output objectives
are of interest. The adjoint approach has been used to drive h- and p-adaptive refinement techniques individ-
ually, although the combination of h-p refinement is still under investigation. This remains a non-trivial task,
since the decision to switch between h-refinement or p-refinement rests not on the local error magnitude,
but on the local smoothness of the solution, which is not addressed by the adjoint approach itself. Thus,
additional techniques for examining solution smoothness and for choosing between h and p refinement must
be developed and demonstrated. This is particularly important for flows with discontinuities such as shock
waves or slip lines.

4. Broader Impact of DEPSCoR Project

As a component of the DEPSCoR program, the objectives of this project include not only the technical
accomplishments described above, but also the broader impact in building research infrastructure and ca-
pabilities at the University of Wyoming and across the state. As mentioned in the original proposal, the
University of Wyoming (UW) has chosen to concentrate on several selective areas of distinction, one of
which is computational science. The PI and co-PI of this project were hired with this emphasis in mind, and
were newcomers to the University of Wyoming at the initiation of this project. Indeed this project constituted
the first major research award for the PI and co-PI at UW, and has been instrumental in jump-starting their
research programs. At the end of this project, the co-PI is successfully involved in two other computational
science collaboration research projects, while the PI has built up a fully externally funded research group
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of 3 post-doctoral researchers and four PhD graduate students. Furthermore, much of the on-going research
in these programs has been leveraging progress made in the current ONR DEPSCoR project. For example,
the code developed by the PI's research group is being used as the basis for a high-order DG simulation
research project for high-speed flows funded by the NASA Fundamental Aeronautics program.

The current award also initiated the fruitful collaboration between the Departments of Mathematics and
Mechanical Engineering which has continued and grown over the last three years. Campus wide, the PI
and co-PI have been instrumental in leading in the organization of a computational science and engineering
program, designed for providing graduate students with better interdisciplinary training in computational
science matters.

Finally, in the fall of 2006, a partnership between the State of Wyoming, the University of Wyoming
and the National Center for Atmospheric Research (NCAR) in Boulder Colorado was announced, whereby a
Petaflops computational facility will be hosted within the State of Wyoming and close collaboration between
NCAR and UW in computational science matters will be pursued. While the funding provided by the State,
and the negotiations between the University and NCAR executives played a decisive role in the formation of
this partnership, the roots of this collaboration can be traced partly to the current ONR DEPSCoR project.
Our work under this project on DG methods has been very simlar in nature to research being performed at
NCAR for the next generation climate simulation code, and grass-roots technical collaborations developed
over the course of this project between the PI and co-PI and NCAR scientists. It was through this collabo-
ration that the efforts of NCAR in establishing a new Petaflops facility were communicated, which lead to
initial contacts between NCAR executives and the UW administration, facilitated by the PI and co-PI of this
project.

4.1 People Supported by the Grant
e Dimitri Mavriplis (PI), Professor, Department of Mechanical Engineering

e Dan Stanescu (co-PI), Assistant Professor, Department of Mathematics

e Cris Nastase, Postdoctoral Researcher, Department of Mechanical Engineering

Li Wang, PhD Student, Department of Mechanical Engineering

Arunasalam Rahunanthan, PhD Student, Department of Mathematics

Khosro Shabazi, Postdoctoral Researcher, Department of Mechanical Engineering (March 2007 -
May 2007) '

4.2 Publications Resulting from this Grant

Journal Publications

1. L. Wang and D. J. Mavriplis, Implicit solution of the unsteady Euler equations for high-order accurate
discontinuous Galerkin discretizations, Journal of Computational Physics, Vol 225, No. 2, August
2007, pp 1994-2015.
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2. C. Nastase and D. J. Mavriplis, High-Order Discontinuous Galerkin Methods using an hp Multigrid
Approach, Journal of Computational Physics, Vol 213, No.1, March 2006, pp 330-357.

3. A. Rahunanthan and D. Stanescu; Well-Posed Interface Conditions for Discontinuous Galerkin Ap-
proximations of the Navier-Stokes Equations, to be submitted to Journal of Scientific Computing.

Conference Papers

1. C. Nastase and D. J. Mavriplis, A Parallel h-p Multigrid Solver for Three Dimensional Discontinu-
ous Galerkin Discretizations of the Euler Equations, AIAA paper 2007-0060, paper presented at the
AIAA Aerospace Sciences Meeting and Exhibit, Reno NV, January 2007.

2. L. Wang and D. J. Mavriplis, Implicit Solution of the Unsteady Euler Equations for High-Order
Accurate Discontinuous Galerkin Discretizations, AIAA paper 2006-0109, paper presented at the
ATAA Aerospace Sciences Meeting and Exhibit, Reno NV, January 2006.

3. C. Nastase and D. J. Mavriplis, Discontinuous Galerkin Methods Using an h-p Multigrid Solver for
Inviscid Compressible Flows on Three-Dimensional Unstructured Meshes, AIAA paper 2006-0107,
paper presented at the AIAA Aerospace Sciences Meeting and Exhibit, Reno NV, January 2006.

4. C. Nastase and D. J. Mavriplis, "High-Order Discontinuous Galerkin Methods using a Spectral Multi-
grid Approach”, AIAA paper 2005-1268, paper presented at the 43rd AIAA Aerospace Sciences
Meeting and Exhibit, Reno NV, January 2005.

5. D. Kim and D. Stanescu; ”p”-Multigrid For The Nodal Discontinuous Galerkin Approximation, Pro-
ceedings of the 9th Copper Mountain Conference on Iterative Methods, Copper Mountain, CO, April
2-7, 2006.

Conference Presentations w/o Papers

1. D.J. Mavriplis, Solution of high-order discontinuous Galerkin methods using a combined H-P multi-
grid approach, presentation at the 9th Copper Mountain Conference on Iterative Methods, Copper
Mountain, CO, April 2-7, 2006.

2. C. Nastase and D. J. Mavriplis, High-Order Discontinuous Galerkin Methods using an hp Multigrid
Approach, presentation at the SIAM Annual Meeting, New Orleans, LA, July 2005.

3. L. Wang and D. J. Mavriplis, Implicit Solution of High-Order Accurate Discretizations of the Unsteady
Wave Equation using Spectral Multigrid, presentation at the 12th Copper Mountain Conference on
Multigrid Methods, Copper Mountain, CO, April 2005.

Student Theses
1. L. Wang; Techniques for Discontinuous Galerkin Discretizations, PhD Thesis, in preparation, 2008.

2. A. Rahunanthan; Stable Discontinuous Galerkin Approximations for Parabolic Partial Differential
Equations, PhD Thesis in preparation, 2008.
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